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Interaction among Ellipsoidal Inclusions

and a Bimaterial Interface∗

Nao-Aki NODA∗∗, Katsuya ONO∗∗ and Yasuhiro MORIYAMA∗∗

Ellipsoidal inclusions can be regarded as a general model of defects in structures because
they cover a lot of particular cases, such as line, circular and spherical defects. This paper
deals with three-dimensional stress analysis for ellipsoidal inclusions in a bimaterial body un-
der tension. The problem is formulated as a system of singular equations with Cauchy-type
or logarithmic-type singularities, where unknowns are densities of body forces distributed in
the r- and z-directions in bimaterial bodies having the same elastic constants of those of the
given problem. In order to satisfy the boundary conditions along the ellipsoidal boundary,
four types of fundamental density functions proposed in the previous paper are applied. Then
the body force densities are approximated as a linear combination of fundamental density
functions and polynomials. The present method is found to yield rapidly converging numer-
ical results for stress distribution along the boundaries of both the matrix and inclusion even
when the inclusion is very close to the bimaterial interface. Then, the effect of bimaterial sur-
face on the stress concentration factor is discussed with varying the distance from bimaterial
interface, shape ratio, and elastic modulus ratio.

Key Words: Elasticity, Stress Concentration, Body Force Method, Ellipsoidal Inclusion,
Singular Integral Equation, Interaction

1. Introduction

Most engineering materials contain some defects in
the form of cracks, voids or inclusions(1), (2). To evaluate
the defects on the strength of structures, it is necessary
to know the stress concentration of those defects. As a
model of defects elliptical and ellipsoidal inclusions are
important because they cover a lot of particular cases, such
as line, circular, and spherical defects. Previously, sev-
eral researchers studied an ellipsoidal inclusion(3) – (6), and
discussed interactions among elliptical, and ellipsoidal in-
clusions(5) – (16). Tsuchida et al. treated several elasticity
problems of a spheroidal inclusion in a half-space(17) – (20).

On the other hand, with increasing the use of com-
posite materials in engineering structures, much attention
has been paid to the strength of bimaterial interface. Since
most materials contain some defects, it is essential to know
the interaction among the defects and the interface. In the

∗ Received 6th September, 2004 (No. 02-1435). Japanese
Original: Trans. Jpn. Soc. Mech. Eng. Vol.69, No.684, A
(2003), pp.1209–1215 (Received 13th December, 2001)

∗∗ Department of Mechanical Engineering, Kyushu Institute
of Technology, 1–1 Sensui-cho, Tobata, Kitakyushu 804–
8550, Japan. E-mail: noda@mech.kyutech.ac.jp

previous studies, most researches have focused on frac-
ture mechanics approach regarding interface(21) – (29). In
these cases, cracks in the vicinity of an interface have
been assumed as a model of the defects after crack ini-
tiation and propagation. Little work has been done for the
other model, especially for three-dimensional models be-
fore crack initiation. In this study, therefore, ellipsoidal
inclusions of revolution near an interface are considered
(see Fig. 1). Then, the interaction among the ellipsoidal
inclusions and interface will be discussed.

2. The Proposed Model

In this paper, as shown in Fig. 1, three types of mod-
els will be considered. Then, the following notations will
be used to describe the ellipsoidal inclusions with a bima-
terial.
EM1, νM1 : Elastic modulus and Poisson’s ratio of matrix 1
EM2, νM2 : Elastic modulus and Poisson’s ratio of matrix 2
EI1, νI1 : Elastic modulus and Poisson’s ratio of inclu-

sion 1
EI2, νI2 : Elastic modulus and Poisson’s ratio of inclu-

sion 2
ai, bi (i=1, 2) : Dimensions of the ellipsoidal inclusions
di (i=1, 2) : Distance among the ellipsoidal inclusion and

Series A, Vol. 48, No. 2, 2005 JSME International Journal
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(a)

(b)

(c)

Fig. 1 Ellipsoidal inclusions in the vicinity of a bimaterial
interface

interface
For example, in Fig. 1 (a), if the elastic ratio EI/EM1 < 1,
interface stresses σt in the matrix may cause crack initi-
ation because they are larger than other stresses. Also,
if EI/EM1 > 1, interface stresses σn may cause interface
debondings. If a crack initiates and propagates from the
interface, the stress intensity factor is necessary to evaluate
the strength of structures. Since little work has been car-
ried out on the three-dimensional aspect, in our previous
studies(30) – (32), three-dimensional cracks near an interface
have been treated in a similar way of the present solution.

In this study, the body force method(33) is used to for-
mulate the elastic stress concentration problem of Fig. 1
as a system of singular integral equations. Then, the un-
known body force densities are approximated by a linear
combination of fundamental density functions and poly-
nomials(34) – (36). The present method gives smooth varia-
tions of interface stresses along the boundary.

3. Numerical Solutions

In the previous papers(34), (35), numerical solutions of
the singular integral equations of the body force method
were discussed. Then, it was found that in the conven-
tional body force method, unknown body force densities
sometimes do not converge with increasing collocation
points. To overcome this difficulty, eight fundamental den-
sities were newly introduced(34), (35). The meaning of the
new fundamental densities was explained more clearly by
introducing auxiliary functions derived from original un-
known functions(36). In this paper, numerical solutions
will be shown precisely but concisely because they are es-
sentially based on the previous studies(34) – (36).

First, several important notations are shown to de-
scribe the numerical solutions for Fig. 1 (a).
(r,θ,z) : a point in a cylindrical coordinate in Fig. 1
(ρ,ϕ,ζ) : a point where body forces are applied
ψ, α : parametric angle of ellipsoid

(ρ = acosα j, ζ = d+ bsinα j, ( j = 1, 2) and, r = acosψi,
z=d+bsinψi, (i=1, 2))

ψi0 : Angle between the r-axis and the normal direction
of ellipsoid at (r,z); tanψi0 = (a/b)tanψi, (i=1, 2)

Fr j , Fz j : ring forces in the r- and z-directions at (ρ,ϕ,ζ)

σ
Fr j
r : normal stress in the r-direction due to a ring force

Fr j

K
Fr j
nn : K

Fr j
nn = σ

Fr j
n = σ

Fr j
r cos2ψi0 + σ

Fr j
z sin2ψi0 +

2τ
Fr j
rz cosψi0 sinψi0

ρ∗rM j(α j) : body force densities distributed in the bodies
Mj in the r-direction

The body force method is used to formulate the prob-
lem as a system of singular integral equations. The
method requires fundamental solutions, that is, the stress
(K

Fr j
nn ,K

Fz j
nn ,K

Fr j
nt ,K

Fz j
nt ) and displacement fields (KFr

ur ,K
Fz
ur ,

KFr
uz ,K

Fz
uz ) at an arbitrary point (r,θ,z) when ring forces are

JSME International Journal Series A, Vol. 48, No. 2, 2005
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(a) Matrix

(b) Inclusion

Fig. 2 Method of solution

acting in the r- and z-directions at (ρ,ϕ,ζ) in a bimaterial
body. Here, (ρ,ϕ,ζ) is a point in the (r,θ,z) coordinate
system where ring forces are applied. For example, in
the analysis of Fig. 1 (a), we can express that ρ = acosα,
ζ =d+bsinα, and r=acosψ, z=d+bsinψ.

In the analysis of Fig. 1 (c), a bimaterial body “Mj”
and two infinite body “I j” are considered, each of which
having the same elastic constants as those of the matrix
(EM j,νM j) and inclusion (EI j,νI j) as shown in Fig. 2. De-
note σnM, τntM , urM, uzM as stresses and displacements
which appear along the prospective elliptical boundaries
in the bimaterial body “Mj”. In a similar way, denote σnI ,
τntI , urI , uzI as stresses and displacements which appear
along the prospective elliptical boundaries in the infinite
body “I j”. Then, a boundary condition for inclusion i, for
example, σnM−σnI =0, can be expressed as Eq. (1).

−1
2

{
ρ∗rMi(ψi)cosψi0+ρ

∗
zMi(ψi)sinψi0

}

− 1
2

{
ρ∗rIi(ψi)cosψi0+ρ

∗
zIi(ψi)sinψi0

}

+
2∑

j=1

[∫ π/2

−π/2
K

Fr j

nnMi
(α j,ψi)ρ

∗
rM j

(α j)ds

+

∫ π/2

−π/2
K

Fz j

nnMi
(α j,ψi)ρ

∗
zM j

(α j)ds

−
∫ π/2

−π/2
K

Fr j

nnIi
(α j,ψi)ρ

∗
rI j

(α j)ds

−
∫ π/2

−π/2
K

Fz j

nnIi
(α j,ψi)ρ

∗
zI j

(α j)ds

]

=−(σ∞z sin2ψi0+σ
∞
ri cos2ψi0) (i=1, 2) (1)

where

−π
2
≤ψ j ≤ π2 ,

−dρ=aj sinα jdα j,

dζ =bj cosα jdα j,

ds=
√

a2
j sin2α j+b2

j cos2α j dα j,

( j=1, 2) (2)

In Eq. (1), unknowns are the body force densities ρ∗rM j
(α j),

ρ∗zM j
(α j), ρ∗rI j

(α j), ρ∗zI j
(α j) distributed in the bodies Mj

and I j in the r- and z-directions along the circumference,
which is specified by the angle α j. Other boundary condi-
tions, τntM −τntI = 0, urM −urI = 0, uzM −uzI = 0, are given
in a similar way. Here ψi0 is the angle between the r-axis
and the normal direction of an ellipsoidal inclusion at (r,z).
Equation (1) includes Cauchy-type singular terms; there-
fore, the integral in Eq. (1) should be taken in a sense of
Cauchy’s of principal value when ψi =α j (i= j). The first
and second terms of Eq. (1) represent the stress due to the
body force distributed on the imaginary boundary, which
is composed of the internal or external points that are in-
finitesimally apart from the initial boundary(33). Taking
K

Fr j

nnMi
(α j,ψi) for example, the notation means the normal

stress σnMi induced at the point when a ring force Fr j in
the r-direction is acting on the imaginary boundary in bi-
material body “M1” or “M2”. These expressions can be
derived by integrating the fundamental solution due to a
point force(37) in the θ-direction. The fundamental stress
and displacement fields due to a ring force in a bimaterial
body are shown in the appendix.

In the present analysis, the unknown body force den-
sities are approximated as a linear combination of funda-
mental density functions and weight functions as shown in
the Eq. (3) (see Refs. (34) – (36)).

ρ∗rM j
(α j)=ρr3M j(α j)wr3(α j)+ρr4M j(α j)wr4(α j),

ρ∗zM j
(α j)=ρz1M j (α j)wz1(α j)+ρz2M j(α j)wz2(α j),

ρ∗rI j
(α j)=ρr3I j(α j)wr3(α j)+ρr4I j(α j)wr4(α j),

ρ∗zI j
(α j)=ρz1I j (α j)wz1(α j)+ρz2I j(α j)wz2(α j).

( j=1, 2) (3)

Here, the fundamental density functions(34) – (36) are de-
fined by Eqs. (4) and (5). In these equations, wr3(α),
wz2(α) are exact densities to express the stress field due
to an ellipsoidal inclusion in an infinite body.

wr3(α)=nr(α), wr4(α)=nr(α)sinα,

wz1(α)=nz(α)/sinα, wz2(α)=nz(α).
(4)



nr(α)=
bcosα√

a2 sin2α+b2 cos2α
,

nz(α)=
asinα√

a2 sin2α+b2 cos2α
.

(5)

Series A, Vol. 48, No. 2, 2005 JSME International Journal
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On the other hand, the weight functions are approximated
by using polynomials as shown in Eq. (6).

ρr3M j(α j)=
M/2∑
n=1

anM j tn(α j), ρr3I j(α j)=
M/2∑
n=1

anI j tn(α j),

ρr4M j(α j)=
M/2∑
n=1

bnM j tn(α j), ρr4I j(α j)=
M/2∑
n=1

bnI j tn(α j),

ρz1M j(α j)=
M/2∑
n=1

cnM j tn(α j), ρz1I j (α j)=
M/2∑
n=1

cnI j tn(α j),

ρz2M j(α j)=
M/2∑
n=1

dnM j tn(α j), ρz2I j (α j)=
M/2∑
n=1

dnI j tn(α j).

(i=1, 2) (6)

tn(α j)= cos{2(n−1)α j}
where M is the number of the collocation points in the
range −π/2≤ α j ≤ π/2. Using the approximation method
mentioned above, we obtain a system of linear equations
for the determination of the coefficients anM j ∼ dnI j. The
number of unknown coefficients is 4M×2. The collocation
points are set as given by Eq. (7).

θL=
π

M
(L−0.5)− π

2
L=2, 3,. . . , M. (7)

Using the numerical solution mentioned above we will ob-
tain the stress distribution along the interface and discuss
the maximum stress.

4. Results and Discussion

4. 1 Convergence of the results
First, in Fig. 1 (b), we put σ∞r1=σ

∞
θ1=1, σ∞z =0, a/b=

1, b/d = 0.9, EI/EM1 = 0, EM2/EM1 = 0, and Poisson’s
ratio νM1 = 0.3. Then, Table 1 shows the convergence
of interface stresses σtM , σnM , σntM , σtI , σnI , σntI at
A in Fig. 1 (b) with increasing the collocation number M
for two spheroidal cavities in a semi-infinite body. The
present results show good convergence to the sixth digit
even for the case of b/d=0.9.

4. 2 Results of an ellipsoidal inclusion in the vicin-
ity of an interface

Figure 3 shows an example of the results of an ellip-
soidal inclusion near an interface. More detail results may
be found in Refs. (38) – (41). In this paper, the results of
two spheroidal inclusions will be mainly shown.

Table 1 Convergence of interface stresses at A when a/b = 1, b/d = 0.9, EI/EM1 = 0,
EM2/EM1 =0, σ∞r1 =σ

∞
θ1 =1, σ∞z =0 in Fig. 1 (b)

4. 3 Results of two spheroidal cavities in an infinite
body

Table 2 shows the maximum stress and the stress at
the point ψ=0◦ for the problem of two spheroidal cavities
in an infinite body with the results of Nisitani’s approx-
imate calculation(7) and Miyamoto’s solution(11). In the
analysis, the Green’s function for a ring force in an infi-
nite body was used(42). The angle ψ in Table 2 shows the
position of maximum stress. It is seen that Nisitani’s re-
sults, which are based on a simple calculation, are more
accurate than Miyamoto’s results, which are based on a
complicated three-dimensional theory of elasticity.

4. 4 Results of two spheroidal inclusions in the
vicinity of an interface

Table 3 and Fig. 4 show the results of two spheroidal
cavities in a semi-infinite body under biaxial tension.
Here, the stresses σt =σθ at A (ψ1 =−90◦), B (ψ1 = 90◦),
C (ψ2 = −90◦), D (ψ2 = 90◦) are indicated. It is seen
that the stress at A rapidly increases as b/d→ 1. On the
other hand, the stresses at B and C decreases in the range
b/d = 0.4 – 0.8 and finally increases when b/d = 0.85 – 1.
The stress at D is almost constant independent of the size
of the cavities.

Figure 5 (a) shows the results of two spheroidal cav-
ities near an interface under longitudinal tension. With
increasing elastic modulus ratio of the matrix EM2/EM1,

Fig. 3 Interface stress σn when σ∞z =1, σ∞r1 =σ
∞
θ1 =σ

∞
r2 =σ

∞
θ2 =

0, νM1 = νI1 =0.3, EI/EM1 =EM2/EM1 =∞ in Fig. 1 (a)

JSME International Journal Series A, Vol. 48, No. 2, 2005



104

Table 2 Maximum stress σt at A and B for two spheroidal cavities in an infinite body when
a1/b1 = a2/b2 = 1, νM1 = νM2 = 0.3, EM1 = EM2 = EM , EI1/EM = EI2/EM = 0, σ∞r1 =

σ∞θ1 =σ
∞
r2 =σ

∞
θ2 =0, σ∞z =1 in Fig. 1 (c).

Table 3 Interface stress σt =σθ at points A, B, C, D of two spheroidal cavities in a semi-
infinite body when a1/b1=a2/b2 =1, νM1=0.3, EM2/EM1 =0, EI1/EM1=0, σ∞r1 =

σ∞θ1 =1, σ∞z =0 in Fig. 1 (b)

Fig. 4 Interface stress σt =σ∞ at points A, B, C, D for two
spheroidal cavities when EM2/EM1 =0, EI1/EM1 =0,
a1/b1 = a2/b2 = 1, νM1 = 0.3, σ∞r1 =σ

∞
θ1 = 1, σ∞z = 0 in

Fig. 1 (b)

the position of the maximum stress varies from ψ1 � 0◦

to ψ1 = 90◦. Also, Fig. 5 (b) shows the results of two
spheroidal rigid inclusions near an interface. With increas-
ing elastic modulus ratio of the matrix EM2/EM1, the max-
imum stress σn increases at ψ1 =−90◦.

5. Conclusion

In this study, ellipsoidal inclusions of revolution in
the vicinity of a bimaterial interface were considered by
using the body force method. First, all components of
stress and displacement were shown when ring forces are
acting in the r- and z-directions in a three-dimensional
bimaterial body (see Fig. 6). Then, the problems were
solved using the body force method coupled with a sys-
tem of singular integral formulation. In order to satisfy
the boundary conditions, the unknown functions were ap-
proximated by a linear combination of fundamental den-
sity functions and polynomials. The preset method was
found to yield rapidly converging numerical results and
smooth stress distribution along the boundary. Several
interaction problems among the inclusions and interface
were discussed with varying the aspect ratio, elastic mod-
ulus ratio, and spacing of inclusions.

Appendix: Stress and displacement due to a ring
force in a bimaterial body

In the following Eqs., (r,θ,z) is a point in question,
and (ρ,ϕ,ζ) is a point where ring forces are applied. Then,
as shown in Fig. 6 (a), the stress and displacement fields
in material 2 when ring forces are applied in the r- and
z-directions in material 1 can be expressed as shown in
Eqs. (8) – (21).

Series A, Vol. 48, No. 2, 2005 JSME International Journal
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(a) Interface stress σt when EI1/EM1 =EI2/EM1 =0

(b) Interface stress σn when EI1/EM1 =EI2/EM1 =∞
Fig. 5 Interface stress when a1/b1 = a2/b2 = 1, σ∞z = 1,

σ∞r1 =σ
∞
θ1 =σ

∞
r2 =σ

∞
θ2 =0, νM1= νM2 = νI1 = νI2 =0.3, in

Fig. 1 (c)



K
Fr j

nnMi
=σFr

n

=σFr
r cos2ψi0+σ

Fr
z sin2ψi0+2τFr

rz cosψi0 sinψi0,

K
Fz j

nnMi
=σFz

n

=σFz
r cos2ψi0+σ

Fz
z sin2ψi0+2τFz

rz cosψi0 sinψi0,

KFr j
ntMi
=τFr

nt = (σFr
z −σFr

r )cosψi0 sinψi0

+τFr
rz (cos2ψi0−sin2ψi0),

KFz j
ntMi
=τFz

nt = (σFz
z −σFz

r )cosψi0 sinψi0

+τFz
rz (cos2ψi0−sin2ψi0).

(i=1, 2) (8)

KFr
ur =UFr

r

=C

{
1
2

[
2κ1(1−A)−ES (κ1−1)(κ2+1)

]
r2

mI1,1

− (1−A)
{
rρI3,0− (r2+ρ2)I3,1+rρI3,2

}}

(a) Stress and displacement in material 2 due to a ring
force in the r- or z-direction in material 1

(b) Stress and displacement in material 1 due to a ring
force in the r- or z-direction in material 1

Fig. 6 Ring forces acting in the r- and z-directions in a
bimaterial

+

∫ π

0

{
−TS (κ2+1)z

[
cosϕ

R1(R1−z+ζ)

+
2R1−z+ζ

R3
1(R1−z+ζ)2

{
rρ− (r2+ρ2)cosϕ+rρcos2ϕ

}
+

1
2

S (κ2+1)[E(κ1−1)−2T ]

×
[

cosϕ
R1−z+ζ

+
1

R1(R1−z+ζ)2

×
{
rρ− (r2+ρ2)cosϕ+rρcos2ϕ

}]}
dϕ (9)

KFr
uz =UFr

z

=C
{[

(1−A)(z−ζ)−TS (κ2+1)z
]
(−ρI3,0+rI3,1)

}

+C
∫ π

0

{
TS (κ2+1)

R1(R1−z+ζ)
(−ρ+rcosϕ)

}
dϕ (10)

KFz
ur =UFz

r

=C
{[

(1−A)(z−ζ)−TS (κ2+1)z
]
(rI3,0−ρI3,1)

}

−C
∫ π

0

{
TS (κ2+1)

R1(R1−z+ζ)
(r−ρcosϕ)

}
dϕ (11)

KFz
uz =UFz

z

=C
{[

(1−A)κ1−TS (κ2+1)
]
r2

mI1,0

+
[
(1−A)(z−ζ)2−TS (κ2+1)z(z−ζ)

]
I3,0

}
(12)

σFr
r =D

{
1
2

{
(κ2−3)(1−B)+2(1−A)

}
(−ρI3,0+rI3,1)
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+
1
2

[
2(1−A)−ES (κ2+1)

]
(1−κ1)(rI3,1−ρI3,2)

−3(1−A)
{
−r2ρI5,0+r(r2+2ρ2)I5,1

−ρ(ρ2+2r2)I5,2+rρ2I5,3

} /
r2

m

+

∫ π

0

[
1
2

S (κ2+1)[2T −E(κ1−1)]

×
[−ρ+3rcosϕ−2ρcos2ϕ

R1(R1−z+ζ)2

− 3R1−z+ζ
R1(R1−z+ζ)3

{
−r2ρ+r(r2+2ρ2)cosϕ

−ρ(ρ2+2r2)cos2ϕ+rρ2 cos3ϕ
}]

+TS (κ2+1)z

×
 2R1−z+ζ

R3
1(R1−z+ζ)2

(−ρ+3rcosϕ−2ρcos2ϕ)

−


3(2R1−z+ζ)

R5
1(R1−z+ζ)2

+
2

R3
1(R1−z+ζ)3


×
{
−r2ρ+r(r2+2ρ2)cosϕ

−ρ(ρ2+2r2)cos2ϕ+rρ2 cos3ϕ
}]]

dφ

}
(13)

σFr
z =D

{
1
2

{
(κ2−3)(1−B)+2(1−A)

+2(T −T )S (κ2+1)
}
(−ρI3,0+rI3,1)

+
[
3TS (κ2+1)z(z−ζ)−3(1−A)(z−ζ)2

]

× (−ρI5,0+rI5,1)
/

r2
m

}
(14)

σFr
θ =D

{
1
2

{
(κ2−3)(1−B)+2(1−A)

}
(−ρI3,0+rI3,1)

+
1
2

[
2(1−A)−ES (κ2+1)

]
(1−κ1)ρ(−I3,0+ I3,2)

+3(1−A)ρ2(ρI5,0−rI5,1−ρI5,2+rI5,3)
/

r2
m

}

+D
∫ π

0

[
−1

2
S (κ2+1)[E(κ1−1)−2T ]

×
[−3ρ+rcosϕ+2ρcos2ϕ

R1(R1−z+ζ)2

+
3R1−z+ζ

R3
1(R1−z+ζ)3

ρ2(ρ−rcosϕ−ρcos2ϕ+rcos3ϕ)


−TS (κ2+1)z

×
 2R1−z+ζ

R3
1(R1−z+ζ)2

(3ρ−rcosϕ−2ρcos2ϕ)

−


3(2R1−z+ζ)

R5
1(R1−z+ζ)2

+
2

R3
1(R1−z+ζ)3



×ρ2(ρ−rcosϕ−ρcos2ϕ+rcos3ϕ)


dϕ (15)

τFr
rz =D

[{
1
4

{[
2(1−κ1)(1−A)+ES (κ1−1)

]
(z−ζ)

−4TS (κ2+1)z
}
I3,1−3

[
(1−A)(z−ζ)−TS (κ2+1)z

]

×
{
−rρI5,0+ (r2+ρ2)I5,1−rρI5,2

} /
r2

m

}]

−D
∫ π

0


S (κ2+1)[E(κ1−1)−2T ](2R1−z+ζ)

4R3
1(R1−z+ζ)2

×
{
−rρ+ (r2+ρ2)cosϕ−rρcos2ϕ

}

− S (κ2+1)[E(κ1−1)−2T ]
4R1(R1−z+ζ)

cosϕ

dϕ (16)

σFz
r =D

{
1
2

{[
(κ2−3)(1−B)+2(1−A)

]
(z−ζ)

−2TS (κ2+1)z
}
I3,0

+3
[
TS (κ2+1)z− (1−A)(z−ζ)

]

× (r2I5,0−2rρI5,1+ρ
2I5,2)

/
r2

m

}

−D
∫ π

0


TS (κ2+1)

R1(R1−z+ζ)
− TS (κ2+1)(2R1−z+ζ)

R3
1(R1−z+ζ)2

× (r2−2rρcosϕ+ρ2 cos2ϕ)

}
dϕ (17)

σFz
z =D

{
1
2

{[
(κ2−3)(1−B)+2(2−κ1)(1−A)

+2(T −T )S (κ2+1)
]
(z−ζ)−2TS (κ2+1)z

}
I3,0

+3(z−ζ)2
[
TS (κ2+1)z− (1−A)(z−ζ)

]
I5,0

/
r2

m

}
(18)

σFz
θ =D

{
1
2

{[
(κ2−3)(1−B)+2(1−A)

]
(z−ζ)

−2TS (κ2+1)z
}
I3,0

+3
[
TS (κ2+1)z− (1−A)(z−ζ)

]
ρ2(I5,0− I5,2)

/
r2

m

}

−D
∫ π

0


 TS (κ2+1)
R1(R1−z+ζ)

− TS (κ2+1)(2R1−z+ζ)

R3
1(R1−z+ζ)2



×ρ2(1−cos2ϕ)

}
dϕ (19)

τFz
rz =D

{
−1

2

{
TS (κ2+1)+ (κ1−1)(1−A)

}
(rI3,0−ρI3,1)

+3
[
TS (κ2+1)z(z−ζ)+ (A−1)(z−ζ)2

]
× (rI5,0−ρI5,1)

/
r2

m

}
(20)

where
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

In,m =

∫ π

0

cosmϕ

(e1−cosϕ)n/2
dϕ,

e1=1+
(r−ρ)2+ (z+ζ)2

2rρ
,

κ1=3−4νM1, κ2 =3−4νM2, Γ=
GM2

GM1
,

S =
2

1+Γ
, A=

Γκ1−κ2

1+Γκ1
, B=

Γ−1
κ2+Γ

,

C=
Γρ

2µ2π(κ2+1)r3
m
, D=

Γρ

π(κ2+1)r3
m
,

E=
1−Γ

1+Γκ1
,

T =
1
4

[
κ1−1

1+Γκ1
− (κ2−1)Γ

κ2+Γ

]
,

T =
1
2

[
κ2−1
κ2+Γ

− (κ1−1)Γ
1+Γκ1

]
,

rm=
√

2rρ, R2
1 = r2+ρ2+ (z−ζ)2−2rρcosϕ

(21)

Here, In,m (n= 3, 5, 7, m= 0, 1, 2, 3) can be expressed by
using complete elliptic integrals(42), (43). Also, GM1, GM2

are moduli of transverse elasticity of each material.
Similarly, the stress and displacement fields in ma-

terial 1 when ring forces are applied in the r- and z-
directions in material 1 have been given as Eqs. (14) –
(28) in Ref. (39). Furthermore, Hasegawa et al. have
derived equivalent fundamental Green’s functions due to
ring forces in a biomaterial in closed forms(44), (45).
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